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Only the simplest monopole scattering behavior has usually been treated in previous time-

reversal analyses. A new application of time-reversal processing of wave scattering data permits
characterization of scatterers by analyzing the number and nature of the singular functions (or
eigenfunctions) associated with individual scatterers when they have multiple contributions
from monopole, dipole and/or quadrupole scattering terms. We discuss acoustic, elastic, and
electromagnetic scattering problems for low frequencies (ka < 1, k being the wavenumber and
a the radius of the scatterer). Specific examples for electromagnetic scattering from one of a
number of small conducting spheres show that each sphere can have up to six distinct time-
reversal eigenfunctions associated with it.
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Previous work shows that time-reversal signal process-
ing [1, 2] and analysis [3–5] of wave scattering data can
be successfully used to achieve super-resolution in refo-
cusing through random media [6] (i.e., better focusing
than can be achieved in a homogeneous medium with the
same size array) of waves onto the location of a source —
even when the actual location of that source is unknown.
This technique has obvious applications to communica-
tions in complex environments such as ocean acoustics
and urban cell phone reception and transmission. Time-
reversal processing has also been shown to produce good
imaging of scatterers in random media [7, 8] as long as
the magnitude of the fluctuations in the random medium
is not too large.

The great majority of time-reversal analysis done so far
has concentrated on the simplest (i.e., monopole) scat-
tering behavior. However, a different application of time-
reversal processing (and the one we will concentrate on
here) involves characterizing scatterers by analyzing fur-
ther the number and nature of the multiple singular func-
tions (or eigenfunctions) associated with each scatterer
including dipole and quadrupole, as well as the standard
monopole, terms when all are present and detectable. For
example, Chambers and Gautesen [9] and Chambers [10]
have analyzed time-reversed acoustic scattering for fluids
when there is contrast both in bulk modulus (monopole)
and fluid density (dipole). They showed for the case of
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a small fluid sphere that the orthogonality condition for
the eigenfunctions in the aperture of the array constrains
the dipole moment of the scatterer to three possible or-
thogonal orientations. Each eigenfunction is generated
by a linear combination of scattering from the monopole
moment and one of the three orientations of the dipole
moment. The monopole plus the three orthogonal ori-
entations of the dipole thus represent four independent
degrees of freedom for the time-reversal array scattering
from a fluid sphere. The maximum number of possi-
ble eigenvalues of the system is equal to the number of
degrees of freedom (four). Fewer eigenvalues may be ob-
served for special array and sphere configurations that
possess additional symmetries (e.g., only three eigenval-
ues for a linear array). For larger fluid spheres, additional
eigenvalues are generated as higher order scattering mo-
ments (e.g., quadrupole) become important [10]. The
dependence of the eigenvalues and eigenfunctions on the
scattering geometry, as well as mechanical properties of
the sphere, could be used to characterize the sphere.

The observation that the number of eigenstates of a
time-reversal system is bounded by the number of de-
grees of freedom (multipole moments and orientations)
in the scattering can also be generalized to other wave
systems. For example, an additional mode of scatter-
ing in elastic media is due to contrast in shear modulus
(quadrupole, with from three to six relevant orientations,
depending on the symmetry of the scattering problem).
For isotropic media, there would be a single scalar associ-
ated with contrast in shear modulus, while for anisotropic
media there could be as many as five. If k is the wave
number and a is the radius of a spherical scatterer and
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we consider only small values of ka, this sort of analysis
shows quite simply then that in acoustics and elasticity
we expect a single eigenfunction for monopole scatter-
ing, as many as three distinct eigenfunctions for dipolar
scattering, and from three to six more for quadrupole
scattering for elastic wave time-reversal experiments in
solids, and correspondingly (significantly) fewer modes
in fluids.

In contrast, electromagnetic scattering does not permit
monopole contributions, but dipole and higher order mul-
tipole contributions are possible. Dipolar contributions
(as we show here) can come either from contrast in dielec-
tric properties, or from conductivity. For poorly conduct-
ing materials, only the dielectric scattering modes are im-
portant. But, for highly conducting materials, both the
dielectric and the conducting properties of the scatterer
can contribute terms to the scattering matrix. Since the
dipole is a vector quantity, there can be as many as three
contributions from each type of scattering feature — six
total. Our analysis takes a form similar to that of Tortel
et al. [11], and we present a summary of it here.

Consider an array of N short, crossed-dipole elements
lying in the plane z = −za, where za is the distance
between the plane and the scattering sphere (located at
the origin in 3D). The position of the nth element is given
by the vector rn = (ξn, ηn,−za). Following Krauss [12],
the electric field at the field point r radiated from the
nth element is given by

E(i)
n (Rn) =

ikeikRn

4πε0cRn

R̂n×
[

R̂n × (dHIH
n êx + dV IV

n êy)
]

,

(1)
where c is the speed of light, k is the wavenumber, ε0
is the electrical permittivity, and Rn = r − rn. The
scalar Rn is the magnitude of the vector Rn and R̂n is
the unit vector in the direction of Rn. The horizontal
and vertical dipoles in the element (lengths dH and dV )
are driven by the currents IH

n and IV
n respectively. The

horizontal dipole is oriented parallel to the x axis (unit
vector êx) and the vertical dipole is oriented parallel to
the y axis (unit vector êy).

A sphere of radius a � za is placed in front of the
array, centered at the origin. The field incident on the
sphere from the nth element can be approximated as a
plane wave coming from the direction of the element. For
a sphere much smaller than a wavelength (ka � 1), the
field scattered from an incident plane wave is given to
leading order O(k3a3) [13] by

E(s)(r) = −k2eikr

r
[̂r × (m + r̂ × p)] , (2)

where p is the induced electric dipole moment and m is
the induced magnetic dipole moment generated by the
incident field. The moments are related to the incident
field E

(i)
n evaluated at the position of the sphere r = 0

(Rn = −rn):

m = −m0r̂n × E(i)
n (−rn) , p = p0E

(i)
n (−rn) , (3)

where p0 = a3(ñ2 − 1)/(ñ2 + 2), ñ2 = ε + i4πσ/ω, and
m0 = −iBm

1 /k3 (see [13]). The various factors are ε the
relative permitivity of the sphere, σ the conductivity, ω
the angular frequency, and Bm

1 is a quantity defined in
reference [13] that determines the strength of the mag-
netic moment. When the conductivity of the sphere is
small, Bm

1 can be neglected to leading order, so then the
magnetic moment m does not contribute to the scattered
field. In general, p0 and m0 are complex and can be rep-
resented in terms of magnitude and phase: p0 = |p0|eiθp ,
m0 = |m0|eiθm .

The scattered field induces voltages on each dipole of
the array elements. From reference [14], the voltages in-
duced on the dipoles of the mth element can be expressed
as

V H
m = −dH [̂rm × (r̂m × êx)] ·E(s)(rm) , (4)

V V
m = −dV [̂rm × (r̂m × êy)] ·E(s)(rm) .

Combining these with the previous expressions for the
incident field (1) and scattered field (2), we can calculate
the coupling between the voltages in the mth receiving
element and the currents in the nth transmitting element
generated from the scattering by the sphere. We define
an operator (a 3 × 3 matrix) ∆mn = r̂m · r̂nI − r̂nr̂T

m

(where I is the identity matrix) to replace the double
vector cross-products that appear repeatedly in these for-
mulas, and note that this operator has a character similar
to that of a projection operator. This observation greatly
simplifies the resulting algebra. The details are elemen-
tary but still somewhat tedious, so we will not show them
here. The heart of the scattering operator of interest has
the general form S ≡ ∆mm (m0∆mn − p0∆mm) ∆nn, and
so it follows immediately that

S = m0∆mn − p0∆mm∆nn. (5)

Then the 2 × 2 matrix that connects any source to any
receiver is

[

KHH
mn KHV

mn

KV H
mn KV V

mn

]

≡ ik3eik(rm+rn)

4πε0crmrn

[

dH êT
x

dV êT
y

]

S
[

dH êx dV êy

]

,

(6)
and the final result is:

[

V H
m

V V
m

]

=

[

KHH
mn KHV

mn

KV H
mn KV V

mn

] [

IH
n

IV
n

]

, (7)

where the superscripts H and V refer to the horizontal
and vertical dipoles in each element and the correspond-
ing polarizations. (For more details see [15].) The 2 × 2
matrix Kmn can then be written as

Kmn =
ik3q

4πε0c
eik(rm+rn)K̂mn , (8)

with the elements of K̂mn determined by Eq. (6), where

q =
√

|p0|2 + |m0|2. Note that K̂nm = K̂T
mn by reci-

procity (superscript T indicates the transpose). The di-

agonal elements of the K̂mn matrix describe the cou-
pling between dipoles with the same polarizations. The
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off-diagonal elements describe the cross-polarization cou-
pling. Thus, all combinations of polarization coupling are
represented in K̂mn.

From these results, the relationship between the trans-
mitted currents and the received voltages over the entire
array can easily be constructed. Let V be the vector of
received voltages and I the vector of transmitted currents
(both with length 2N). Then we can write

V = T I, (9)

where

V =
[

V H
1 , V V

1 , . . . , V H
m , V V

m , . . . , V H
N , V V

N

]T
,

I =
[

IH
1 , IV

1 , . . . , IH
n , IV

n , . . . , IH
N , IV

N

]T
, (10)

and the 2N × 2N matrix T is assembled from all the
matrices Kmn. (The current vector I is not to be con-
fused with the identity matrix I.) The matrix T is the
inter-element response matrix (transfer matrix in acous-
tics [16]) and is symmetric (from reciprocity). It has
units of impedance and can be considered the part of
the radiation impedance of the array attributable to the
presence of the sphere. Its 2N × 2N size results from
the two components of polarization for each element in
the array. If only one polarization is used (dH = 0 or
dV = 0), three-quarters of the matrix elements are zero
and T reduces to an N × N matrix.

Decomposition of the time-reversal operator (TRO) is
achieved by first considering its definition T∗T. Its eigen-
values and eigenvectors then characterize the properties
of the array as a time-reversal system. Each eigenvector
represents a set of complex currents that, when applied
to the dipoles in each element of the array, will produce
a field that focuses on the sphere. In addition, the con-
jugates of the resulting voltages from the received field
will be proportional to the transmitted currents. The
constant of proportionality is the eigenvalue (square of
the singular value) and measures the apparent strength
of the scattering mode that is excited in the sphere by
the incident field. Direct calculation of the eigenvalues
and eigenvectors of T∗T can be unwieldy, so the sin-
gular value decomposition (SVD) for T has often been
used instead [5]. Since T is symmetric the SVD is [10]
TΦ = ΛΦ∗, where the singular values Λ are real and
non-negative. The singular vectors Φ are also the eigen-
vectors of the TRO, and the squares of the singular values
are the eigenvalues of the TRO. The SVD can be further
simplified by factoring out common quantities. Then,
letting zj = e−ikrj , for j = 1, . . . , N , we define

Φ =
1√
i

[

φ1z1, φ2z1, . . . , φ2N−1zN , φ2NzN

]T
, (11)

and Λ = k3q

4πε0c
λ, then the SVD becomes

T̂φ = λφ∗ , (12)

where

T̂ =











K̂11 K̂12 · · · K̂1N

K̂21 K̂22 · · · K̂2N

...
...

. . .
...

K̂N1 K̂N2 · · · K̂NN











. (13)

By factoring out the complex exponential from the orig-
inal singular vectors Φ, the part of the phase responsible
for focusing the transmitted field on the sphere is elimi-
nated. As shown by Chambers and Gautesen [9], this is
common to all eigenvectors of the TRO in the presence
of a single scatterer. The remaining vector φ represents a
slowly varying (possibly complex) amplitude distribution
over the array, which may have a pattern of nulls depend-
ing on the nature of the scattering from the sphere.

A careful deconstruction of the elements of the matrix
T̂ = T̂p+T̂m reveals that it can be expressed as a sum of
two terms (for dielectric and conducting contributions),
each of which is an outer product of three vectors:

T̂p = −eiθp
(

g1 gT
1 + g2 gT

2 + g3 gT
3

)

(14)

and

T̂m = eiθm
(

g4 gT
4 + g5 gT

5 + g6 gT
6

)

, (15)

where the vectors gj , for j = 1, . . . , 6, are known explic-
itly from the foregoing analysis. The singular vectors for
matrices of this form can be expressed as linear combina-
tions of the vectors g1 through g6, φ =

∑6
j=1 γjgj . This

fact reduces the SVD for the 2N ×2N matrix T̂ (eq. 12)
to an SVD of the 6 × 6 matrix G (a big reduction if N
is much larger than 3) having elements Gjl = gT

j gl:

−eiθp

6
∑

l=1

Gjlγl = λγ∗
j : j = 1, 2, 3, and

eiθm

6
∑

l=1

Gjlγl = λγ∗
j : j = 4, 5, 6 . (16)

This representation of the inter-element transfer matrix
as a sum of a small number of products of vectors also
occurs for the acoustic case (see Refs. [9, 10]). It is a con-
sequence of the small number of terms used in the partial
wave expansion for the scattered field (2). Here the scat-
tered field is generated by an electric dipole moment and
a magnetic dipole moment, each of which can be oriented
in three mutually orthogonal directions. The two types
of moments, each with three orthogonal directions, rep-
resent six degrees of freedom for the construction of the
scattered field. This means that, for small ka, there are
at most six eigenvectors of the time reversal operator,
with each eigenvector generated by a linear combination
of the fields produced by the induced electric and mag-
netic dipole moments.

The analytical solution of Eq. (16) for the singular vec-
tors and singular values may be obtained in principle, but
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FIG. 1: Singular values for a conducting spherical scatterer
as a function of normalized (by the array radius D/2) range
za. Cross-range for this figure is x = 0. Although there are
six singular functions for the conducting sphere, at x = 0 two
pairs of singular values are degenerate, so only four curves are
visible here.

it would be exceedingly unwieldy and generally uninfor-
mative. Instead, we consider the solution when the array
is symmetric about both the ξ and η axes. Then all the
off-diagonal elements of the G matrix are zero except
for G14 and G25 (since G is symmetric), which greatly
simplifies the solution. Results for a circular array sat-
isfying these conditions and having dH = dV and array
diameter D are plotted in Figs. 1 and 2. Fig. 1 shows
curves of singular values for a conducting spherical scat-
terer as a function of normalized range 2za/D. The value
of cross-range for this case is x = 0, i.e., the center of the
array. Although there are six singular functions for the
conducting sphere, at x = 0 two pairs of singular values
are degenerate, so only four distinct curves are visible.
Fig. 2 shows the singular values for the same conduct-
ing spherical scatterer as a function of normalized cross-
range 2x/D. Normalized range for this case is unity.
Note that, although there are six singular functions for
the conducting sphere, the top two singular values (for
dielectric dipole modes) are degenerate because of the
mutual symmetry between the sphere and the circular
array.

For practical applications of these results, it is clear
that, for a fixed range scenario and either stationary
source/receiver array with moving target or stationary
target and moving array, data such as those in Fig. 2
would also be readily available. Furthermore, using the
top two (degenerate) singular values as the standard, and
assuming at least 1% accuracy in singular value measure-
ment/computation, we see that all the singular values
would be detectable in principle at the center of the cir-
cular array, but two of them would decay very rapidly as
the measurement position expanded from once to twice
(or more) the radius of the array. This observation would
provide some information about the cross-range location
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FIG. 2: Singular values for a conducting spherical scatterer
as a function of normalized (again by the array radius D/2)
cross-range x. Normalized range for this figure is unity. Note
that, although there are six singular functions for the conduct-
ing sphere, the top two singular values (for dielectric dipole
modes) are degenerate because of the mutual symmetry of the
sphere and the circular array.

of the scattering target.
In contrast, acquiring data like those in Fig. 1 would

require either a moving target and/or non-stationary (or
multiple) arrays in order to obtain information based on
the different values of range from array to target. But
again using the top singular value as the standard, we see
that (at least at the array center) all three of the other
distinct singular values stay within about two orders of
magnitude (1%) of the largest out to 10 times the ar-
ray radius. This means that two widely separated arrays
might be needed to measure the range to such a conduct-
ing target by analysis of the computed singular values,
assuming that the arrays also have sufficient sensitivity
and measurement accuracy. Of course, with two arrays
so widely separated, it might be more efficient simply to
use triangulation to detect the range, while the bearing of
the target would always be straightforward to determine
using traditional signal processing methods at each array.
For very distant scatterers, only the highest two singular
values (the two that are degenerate) would be detectable.
This is reasonable as, for very distant targets, it becomes
difficult to determine anything about the scatterer except
its bearing from a single small array. But introduction
of additional widely spaced arrays permits triangulation
for target range, and by further combining the data from
several arrays they could then be used to do scatterer
characterization along the lines outlined here.

We find that relationships between symmetries of scat-
tering and time-reversal eigenvalues seen previously in
acoustics [16, 17] carry over to electromagnetics. Simi-
lar relationships will also hold for other wave scattering
problems as well, such as poroelasticity [18].
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